用分析法证明下列问题:已知a>0,b>0,求证:a^ab^b>=a^bb^a

来源:学生作业帮助网 编辑:作业帮 时间:2022/07/02 07:49:37
用分析法证明下列问题:已知a>0,b>0,求证:a^ab^b>=a^bb^a

用分析法证明下列问题:已知a>0,b>0,求证:a^ab^b>=a^bb^a
用分析法证明下列问题:已知a>0,b>0,求证:a^ab^b>=a^bb^a

用分析法证明下列问题:已知a>0,b>0,求证:a^ab^b>=a^bb^a
证明:由a>0,b>0,ln x是增函数,要证:a^a b^b>= a^b b^a,
即证:aln a + bln b>= aln b + bln a
即证:a(ln a - ln b)+b(ln b-ln a)>=0
即证:(a-b)(ln a -ln b)>=0.
由于,ln x是增函数,因此,a-b与lna -lnb符号相同.
则(a-b)(ln a - ln b)>=0成立.
于是:原不等式成立.