∫ (e^xsiny-my)dx+(e^xcosy-m)dy其中L是按逆时针方向从圆周(x-1)^2+y^2=1上点A(2,0)到点(0,0)的曲线积分πm/2

来源:学生作业帮助网 编辑:作业帮 时间:2024/04/27 16:14:12
∫ (e^xsiny-my)dx+(e^xcosy-m)dy其中L是按逆时针方向从圆周(x-1)^2+y^2=1上点A(2,0)到点(0,0)的曲线积分πm/2

∫ (e^xsiny-my)dx+(e^xcosy-m)dy其中L是按逆时针方向从圆周(x-1)^2+y^2=1上点A(2,0)到点(0,0)的曲线积分πm/2
∫ (e^xsiny-my)dx+(e^xcosy-m)dy其中L是按逆时针方向从圆周(x-1)^2+y^2=1上点A(2,0)到点(0,0)的曲线积分
πm/2

∫ (e^xsiny-my)dx+(e^xcosy-m)dy其中L是按逆时针方向从圆周(x-1)^2+y^2=1上点A(2,0)到点(0,0)的曲线积分πm/2
补上直线N:y = 0、使得半圆y = √[1 - (x - 1)²]与直线N围成闭区域.
P = e^xsiny - my、Q = e^xcosy - m
∂P/∂y = e^xcosy - m、∂Q/∂x = e^xcosy
∫_(L) (e^xsiny - my) dx + (e^xcosy - m) dy + ∫_(N) y dx
= ∫_(L) (e^xsiny - my) dx + (e^xcosy - m) dy + ∫_(N) (0) dx
= ∫∫_(D) (∂Q/∂x - ∂P/∂y) dxdy、D是y = √[1 - (x - 1)²]的面积
= ∫∫_(D) m dxdy
= m · D
= m · (1/2)π(1)²
= mπ/2

验证积分I=∫(e^xsiny-2y+1)dx+(e^xcosy-2x)dy与路径无关 ∫ (e^xsiny-my)dx+(e^xcosy-m)dy其中L是按逆时针方向从圆周(x-1)^2+y^2=1上点A(2,0)到点(0,0)的曲线积分πm/2 ∫(e^xsiny+8y)dx+(e^xcosy-7x)dyL是从A(1,0)到B(7,0)的上半圆周,求详细过程,谢谢! ∫e^x[(1-cosy)dx-(y-siny)dy],其中c为区域 0≤x≤π,0≤y≤sinx的边界曲线取正向.求曲线积分P(x,y)=e^x(1-cosy) -对y求偏导数=e^xsinyQ(x,y)=e^x(siny-y) -->对x求偏导数=e^xsiny-ye^xI=∫∫(e^xsiny-ye^x-e^xsiny)dxdy=-∫∫(ye 设曲线弧L为x^2+y^2=ax(a>0)从点A(a,0)到点O(0,0)的上半圆弧,求∫(e^xsiny-ay+a)dx+(e^xcosy-a)dy∫下面有个L,e^xsiny是e^x乘以siny 计算∫L(e^xsiny-3y)dx+(e^xcosy+x)dy,其中L是由点(0,0)到点(0,2)x^2+y^2=2y的右半圆周 计算∫L(e^xsiny-3y)dx+(e^xcosy+x)dy,其中L是由点(0,0)到点(2,0)x^2+y^2=2x的右半圆周 求∫(e∧xsiny-y)dx+(e∧xcosy-1)dy,其中L为点A(2,0)到点B(0,0)的圆周x^2+y^2=2x 计算∫(e^xsiny+x)dy-(e^xcosy+y)dx,其中L为从点(-2,0)沿曲线(逆时针)x^2/4+y^2/2=1到点(2,0)的弧 求∫(e∧xsiny-y)dx+(e∧xcosy-1)dy,其中L为点A(a,0)到点B(0,0)的上半圆周用完格林公式后是怎么做的 求具体过程 ∫(e-e^x)dx 计算(e^xsiny-3y+x^2)dx+(e^xcosy-x)dy,其中L为:2x^2+y^2=1 ∫e^(xlnx)dx 计算曲线积分∫L(e^(x^2)sinx+3y-cosy)dx+(xsiny-y^4)dy ,其中L是从点(-π,0)沿曲线y=sinx到点(π,0)的弧段 z=e^xsiny,x=cosy,求dz/dy, z=(e^3y) +(x^2)Xsiny,求dz 积分∫dx /(e^x+e^-x) 求 ∫ e 1/e |lnx|dx